

Introduction of ChE 143–144 Topics AY21–22

17 June 2021

& Water Solutions

Clean
Transportation

Sustainable Production **O** Responsible Consumption 🗙

What we do

VISION SPaRC will be a hub for collaborative activities that enable businesses, consumers and policy makers to create sustainable actions and strategies

Life cycle sustainability assessment

Systems modeling and decision analysis

Sustainability in engineering education and policy

Sustainable Production Responsible Consumption

Life Cycle Thinking in ChE

Integrating LCA with Process Design

Sustainable Production Responsible Consumption

a Process selection

b Process optimization

C Process synthesis

Kleinekorte J, et al. 2020. Annu. Rev. Chem. Biomol. Eng. 11:203–33

https://doi.org/10.1146/annurev-chembioeng-011520-075844

Sustainable Production Responsible Consumption

Our Scope

Multi-scale, multi-disciplinary approach to sustainability

Sustainable Production Responsible Consumption

Tools and Methods

- Energy and process modeling
 - Demand and supply profiles
 - Technology simulation
 - Economic analysis
- Life cycle assessment
 - Material flow analysis, life cycle inventory
 - Life cycle impact assessment
- Scenario analysis
 - Sensitivity analysis
 - Scenario development
- Decision analysis
 - Social impact assessment
 - Multi-criteria decision analysis

Topic 1: Banana waste utilization

- Different banana by-products (both pre- and post-harvest)
- Potential for conversion to different materials (both food and non-food)
- GOAL: elucidate environmental benefits and trade-offs of banana waste utilization using LCA

<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252442/</u> <u>https://doi.org/10.1002/9781119528265.ch10</u> <u>https://doi.org/10.1016/j.jclepro.2017.10.298</u> <u>https://doi.org/10.1016/j.jenvman.2020.110493</u>

Topic 2: Renewable desalination

Salinity

gradient

Electricity

Geothermal

Heat

Photovoltaic

Wind, waves

and tidal

Mechanica

Energy

- Various technology options for desalination in remote communities
- Process models for energy+water systems in different configurations

GOAL: develop LCA models of renewable desalination for environmental and economic optimization

https://www.irena.org/publications/2015/Dec/Renewable-Desalination-Technology-Options-for-Islands https://doi.org/10.1016/j.desal.2017.11.018 https://doi.org/10.1016/j.desal.2021.115066 https://doi.org/10.1016/B978-0-12-809240-8.00015-0

SPaRC is looking for affiliates!

Get in touch via email: joaberilla[at]up.edu.ph Visit our website: pages.upd.edu.ph/jmaberilla

Who are we looking for?

- Strong interest in sustainability
- Strong background in material and energy balances
- Familiarity with process industries related to the topic
- Understanding of environmental, economic and social issues
- Excellent communication skills
 - Comes handy when dealing with external partners and stakeholders
- Preferably can prepare literature review during the midyear term